Guida introduttiva: differenze tra le versioni
Da REW Wiki.
(→Come REW esegue le misure) |
(→Come REW esegue le misure) |
||
Riga 9: | Riga 9: | ||
− | <div style="text-align:justify;">Per effettuare una misura, abbiamo bisogno di una sorgente sonora (un altoparlante o un subwoofer) e un microfono (i fonometri contengono un microfono e molti di questi, possono essere utilizzati al posto di un microfono). Uno sweep logaritmico, [[File:Misura.png | miniatura | right]][[File:sweep.png | miniatura | right]]che è un tono che inizia dalle basse frequenze e che aumenta costantemente fino alle frequenze più alte, viene inviato all'altoparlante. Ciò che rende logaritmico lo sweep è il rapporto con il quale avvengono le variazioni di frequenza, che richiedono un tempo fisso per raddoppiare (per esempio, il tempo impiegato per passare da 20 a 40Hz è lo stesso impiegato per passare da 40 a 80Hz). Il microfono cattura il suono proveniente direttamente dalla sorgente, oltre a quello che giunge riflesso, rimbalzando sulle pareti della stanza.<br> L'analisi inizia quando il suono è stato catturato dal microfono. Il processo, chiamato "Fast Fourier Transform" (FFT) viene utilizzato per calcolare di ogni singola frequenza, la propria ampiezza e la propria fase. Tali frequenze, costituiscono nel loro complesso il segnale originale (e il relativo spettro), che abbiamo inviato alla sorgente. Lo stesso processo calcola l’ampiezza e la fase delle frequenze catturate dal microfono. Comparando le ampiezze e le fasi dei segnali catturati, con quelle contenute nello sweep originale, possiamo capire come ciascuna frequenza sia stata influenzata dalla risposta della stanza che stiamo misurando. Questo processo, viene chiamato “Funzione di Trasferimento” della stanza, dal punto in cui è situata la sorgente, al punto in cui è situato il microfono di misura. Notare che per una differente posizione della sorgente o per una differente posizione del microfono, corrisponderà una differente funzione di trasferimento, quindi la nostra misura sarà valida per una sola specifica posizione della sorgente e del microfono.</div> | + | <div style="text-align:justify;">Per effettuare una misura, abbiamo bisogno di una sorgente sonora (un altoparlante o un subwoofer) e un microfono (i fonometri contengono un microfono e molti di questi, possono essere utilizzati al posto di un microfono). Uno sweep logaritmico, [[File:Misura.png | miniatura | right]][[File:sweep.png | miniatura | right]]che è un tono che inizia dalle basse frequenze e che aumenta costantemente fino alle frequenze più alte, viene inviato all'altoparlante. Ciò che rende logaritmico lo sweep è il rapporto con il quale avvengono le variazioni di frequenza, che richiedono un tempo fisso per raddoppiare (per esempio, il tempo impiegato per passare da 20 a 40Hz è lo stesso impiegato per passare da 40 a 80Hz o da 4KHz a 8KHz). Il microfono cattura il suono proveniente direttamente dalla sorgente, oltre a quello che giunge riflesso, rimbalzando sulle pareti della stanza.<br> L'analisi inizia quando il suono è stato catturato dal microfono. Il processo, chiamato "Fast Fourier Transform" (FFT) viene utilizzato per calcolare di ogni singola frequenza, la propria ampiezza e la propria fase. Tali frequenze, costituiscono nel loro complesso il segnale originale (e il relativo spettro), che abbiamo inviato alla sorgente. Lo stesso processo calcola l’ampiezza e la fase delle frequenze catturate dal microfono. Comparando le ampiezze e le fasi dei segnali catturati, con quelle contenute nello sweep originale, possiamo capire come ciascuna frequenza sia stata influenzata dalla risposta della stanza che stiamo misurando. Questo processo, viene chiamato “Funzione di Trasferimento” della stanza, dal punto in cui è situata la sorgente, al punto in cui è situato il microfono di misura. Notare che per una differente posizione della sorgente o per una differente posizione del microfono, corrisponderà una differente funzione di trasferimento, quindi la nostra misura sarà valida per una sola specifica posizione della sorgente e del microfono.</div> |
<div style="text-align:justify;">Dopo aver elaborato la funzione di trasferimento, possiamo usare una "FFT inversa" per ricavare dall’ampiezza della frequenza e dalla sua fase, l’informazione relativa al segnale di tempo, che descrive il modo in cui ''ogni'' segnale viene modificato, quando viaggia dalla sorgente al microfono. Questo segnale di tempo è chiamato "risposta all’impulso". Così come per la funzione di trasferimento, dalla quale esso deriva, anche in questo caso la misura è valida per una sola specifica posizione della sorgente e del microfono.</div> | <div style="text-align:justify;">Dopo aver elaborato la funzione di trasferimento, possiamo usare una "FFT inversa" per ricavare dall’ampiezza della frequenza e dalla sua fase, l’informazione relativa al segnale di tempo, che descrive il modo in cui ''ogni'' segnale viene modificato, quando viaggia dalla sorgente al microfono. Questo segnale di tempo è chiamato "risposta all’impulso". Così come per la funzione di trasferimento, dalla quale esso deriva, anche in questo caso la misura è valida per una sola specifica posizione della sorgente e del microfono.</div> | ||
Versione delle 16:47, 28 ago 2023
Indice
Iniziare con REW
REW è un pacchetto software che misura le funzioni di trasferimento dei sistemi acustici e ne visualizza le corrispondenti frequenze, la fase e la risposta all'impulso e le varie quantità da esse derivanti. Se a questo punto la vostra domanda fosse: "ma di cosa diavolo stiamo parlando?", varrebbe la pena perdere un paio di minuti e leggere l'introduzione a Segnali e Misure, che spiega i concetti di base. Anche se avete già familiarità con questa terminologia, una rapida occhiata a questa introduzione, potrebbe esservi di aiuto.
Come REW esegue le misure
REW utilizza un metodo di misura che fa uso di un segnale sweep sinusoidale logaritmico. Riguardo a tale metodo e alle sue varie alternative, potete trovare una grande quantità di informazioni, leggendo il giornale "Transfer Function Measurement with Sweeps" di SWEN MÜLLER e PAULO MASSARANI, ma in questa sede, vi darò una spiegazione di base. Se invece preferite non sapere, potete saltare la spiegazione.
Per effettuare una misura, abbiamo bisogno di una sorgente sonora (un altoparlante o un subwoofer) e un microfono (i fonometri contengono un microfono e molti di questi, possono essere utilizzati al posto di un microfono). Uno sweep logaritmico, che è un tono che inizia dalle basse frequenze e che aumenta costantemente fino alle frequenze più alte, viene inviato all'altoparlante. Ciò che rende logaritmico lo sweep è il rapporto con il quale avvengono le variazioni di frequenza, che richiedono un tempo fisso per raddoppiare (per esempio, il tempo impiegato per passare da 20 a 40Hz è lo stesso impiegato per passare da 40 a 80Hz o da 4KHz a 8KHz). Il microfono cattura il suono proveniente direttamente dalla sorgente, oltre a quello che giunge riflesso, rimbalzando sulle pareti della stanza.
L'analisi inizia quando il suono è stato catturato dal microfono. Il processo, chiamato "Fast Fourier Transform" (FFT) viene utilizzato per calcolare di ogni singola frequenza, la propria ampiezza e la propria fase. Tali frequenze, costituiscono nel loro complesso il segnale originale (e il relativo spettro), che abbiamo inviato alla sorgente. Lo stesso processo calcola l’ampiezza e la fase delle frequenze catturate dal microfono. Comparando le ampiezze e le fasi dei segnali catturati, con quelle contenute nello sweep originale, possiamo capire come ciascuna frequenza sia stata influenzata dalla risposta della stanza che stiamo misurando. Questo processo, viene chiamato “Funzione di Trasferimento” della stanza, dal punto in cui è situata la sorgente, al punto in cui è situato il microfono di misura. Notare che per una differente posizione della sorgente o per una differente posizione del microfono, corrisponderà una differente funzione di trasferimento, quindi la nostra misura sarà valida per una sola specifica posizione della sorgente e del microfono.
L'analisi inizia quando il suono è stato catturato dal microfono. Il processo, chiamato "Fast Fourier Transform" (FFT) viene utilizzato per calcolare di ogni singola frequenza, la propria ampiezza e la propria fase. Tali frequenze, costituiscono nel loro complesso il segnale originale (e il relativo spettro), che abbiamo inviato alla sorgente. Lo stesso processo calcola l’ampiezza e la fase delle frequenze catturate dal microfono. Comparando le ampiezze e le fasi dei segnali catturati, con quelle contenute nello sweep originale, possiamo capire come ciascuna frequenza sia stata influenzata dalla risposta della stanza che stiamo misurando. Questo processo, viene chiamato “Funzione di Trasferimento” della stanza, dal punto in cui è situata la sorgente, al punto in cui è situato il microfono di misura. Notare che per una differente posizione della sorgente o per una differente posizione del microfono, corrisponderà una differente funzione di trasferimento, quindi la nostra misura sarà valida per una sola specifica posizione della sorgente e del microfono.
Dopo aver elaborato la funzione di trasferimento, possiamo usare una "FFT inversa" per ricavare dall’ampiezza della frequenza e dalla sua fase, l’informazione relativa al segnale di tempo, che descrive il modo in cui ogni segnale viene modificato, quando viaggia dalla sorgente al microfono. Questo segnale di tempo è chiamato "risposta all’impulso". Così come per la funzione di trasferimento, dalla quale esso deriva, anche in questo caso la misura è valida per una sola specifica posizione della sorgente e del microfono.
La risposta all’impulso è esattamente lo stesso segnale che noi vedremmo, se potessimo emettere un click molto breve ma intenso, nel punto della sorgente, e registrare in seguito ciò che il microfono catturerebbe ("molto breve" significa che dura giusto il tempo di un campione, alla frequenza di campionamento che stiamo utilizzando per la nostra analisi. Così a 48kHz, questo durerà solo 1/48.000 di secondo, equivalente a 21 milionesimi di secondo, circa). Potreste quindi chiedervi: "Perché non utilizziamo un click"? Una delle difficoltà è che, a causa della sua brevità, dovrebbe essere estremamente intenso per poterci permettere di studiare cosa accade dopo l’istante iniziale al di sopra del rumore di fondo della stanza. Inoltre, non potremmo più utilizzare un altoparlante per generarlo, ma qualcosa di simile ad una pistola a salve o allo scoppio di un palloncino. Ci sarebbe bisogno anche di un microfono in grado di discriminare il suono molto intenso prodotto dal click, con quello molto più silenzioso dell’eco del click prodotto dalla stanza. Senza contare poi, che la vostra famiglia o i vostri vicini non sarebbero così felici di sentirvi sparare ripetutamente con la pistola a salve per cercare di capire come si comporta la vostra stanza, oltre a non ottenere dei risultati così attendibili come quelli ottenuti utilizzando lo sweep. Per essere più tecnici, è possible ottenere con lo sweep, un rapporto segnale/rumore molto più alto. Il rapporto S/N è determinato dal livello del rumore di fondo e da quanta energia è contenuta nel segnale di test, che a sua volta dipende da quanto forte è il segnale, e da quanto tempo dura. Un impulso è estremamente breve, solo alcuni milionesimi di secondo. Così per ottenere un livello di energia significante, è necessario che questo sia molto intenso. Uno sweep invece, può durare molti secondi, quindi anche ad un volume modesto, la sua energia può valere un milione di volte quella di un impulso.
Una volta ricavata la risposta all’impulso, possiamo analizzarla per ottenere le informazioni sul comportamento della stanza. L’analisi più semplice è ottenuta applicando la FFT, che mostra la risposta in frequenza tra la sorgente e la posizione del microfono. Tuttavia, su questa, abbiamo la possibilità di agire. Modificando la parte della risposta all’impulso che viene analizzata dalla FFT, modifichiamo di conseguenza, l'aspetto della risposta della stanza che stiamo osservando. La prima parte della risposta all’impulso, corrisponde al suono diretto tra la sorgente e il microfono, cioè al percorso più breve tra loro. Il suono che deve fare invece, un percorso più lungo per raggiungere il microfono, rimbalzando sulle pareti della stanza, contiene il contributo della stanza. "Mascherando" la risposta all’impulso e analizzando solo la parte iniziale, ci viene mostrata la risposta in frequenza del suono diretto con un leggero o senza alcun contributo dalla stanza. Allargando la maschera alle successive parti della risposta, possiamo vedere come il contributo della stanza alteri la risposta in frequenza. La capacità di separare i contributi del suono diretto da quello riflesso, rappresenta una importante differenza tra la risposta in frequenza derivata da una risposta all’impulso e una ricavata da un'analisi in tempo reale (RTA), che, per esempio, può solamente mostrare la risposta combinata della sorgente e della stanza.
Altre informazioni che possiamo ottenere dalla risposta all’impulso, comprendono un grafico “a cascata” (waterfall), che viene generato muovendo una finestra in passi lungo la curva di risposta e tracciando le varie risposte in frequenza, per riprodurre un’immagine 3D del modo in cui la risposta in fequenza cambia nel tempo e i dati “RT60” della stanza, che indicano il tempo necessario al suono in varie gamme di frequenza, a decadere di 60dB (1000 volte più piccolo di quello iniziale).
Attrezzatura necessaria
Il primo requisito è rappresentato da un dispositivo per catturare il segnale di test. Ci sono alcune opzioni:
- Un microfono USB dotato di file di calibrazione. Tale microfono può essere usato per misure a banda intera o per basse frequenze. Se il file di calibrazione possiede i dati di sensibilità in un formato che REW riconosce, esso può fungere anche da fonometro calibrato. Il MiniDSP UMIK-1 è raccomandato poichè ha un file di calibrazione in un formato compatibile con REW. Vedere www.minidsp.com.
- Un’alternativa al microfono USB, è un fonometro con uscita analogica a livello linea. Il misuratore Radio Shack è perfettamente adeguato per misure acustiche della stanza in bassa frequenza, sia nella versione con display analogico che digitale. Il misuratore Galaxy CM-140 ha una miglior precisione sulla curva “pesata-C” e un miglior comportamento sulle basse frequenze, ma è più costoso del misuratore RS. I file di calibrazione per i vari misuratori RS e per il CM-140 si trovano nell’area Downloads nella sezione Equalization | Calibration del forum su www.hometheatershack.com/forums/
- L’opzione finale è un microfono analogico, ma molti microfoni richiedono un preamplificatore per produrre un livello linea e per fornire al microfono l’alimentazione phantom. Un misuratore SPL è comunque necessario per fornire il riferimento per calibrare il misuratore di SPL di REW. Per misure a banda piena, il microfono deve essere comunque calibrato, per fornire risultati accurati.
- Un supporto su treppiede, poichè piccoli movimenti del microfono/fonometro, possono produrre grandi variazioni nelle misurazioni. Per risultati ripetibili è necessario un supporto stabile che mantenga in posizione per un lungo tempo gli strumenti di misura. Per misure a bassa frequenza (sotto il centinaio di Hz), il microfono può essere puntato verso l’alto. Questo evita di doverlo muovere per misurare diversi altoparlanti oltre a facilitare la lettura del display dello strumento. Per eseguire invece misure ad alta frequenza, è meglio puntare il microfono direttamente verso l’altoparlante che deve essere misurato e che, in entrambi i casi, deve essere posizionato all’altezza dell’orecchio nella vostra posizione di ascolto abituale.
- Se state usando un microfono USB, l’uscita cuffia del vostro computer, può fornire l’adeguato livello del segnale di test utilizzato da REW. In questo modo, non è necessario utilizzare alcuna scheda audio aggiuntiva. Se invece state usando un fonometro o un microfono con un preamplificatore, sarà necessaria una scheda audio (interna o esterna), con ingresso di linea e con uscita cuffia o linea. Da notare che gli ingressi microfonici di molti PC e laptop NON sono adatti e non dovrebbero essere usati per questo scopo (hanno un guadagno eccessivo e molti presentano un alto livello di rumore e una larghezza di banda limitata) ma, la combinazione degli ingressi micro/linea può essere usata con successo. Le schede audio economiche o integrate, sono tipicamente adeguate allo scopo. Una misura di riferimento della connessione di loopback, può essere utilizzata per rimuovere dalla misurazione, la risposta in frequenza della scheda audio. Se desiderate verificare il corretto funzionamento di alcune schede audio USB, consultate il forum di REW su www.hometheatershack.com.
- Dei cavi, per collegare il vostro fonometro o l’uscita del vostro pre microfonico, alla vostra scheda audio (se non utilizzate un microfono USB) e per collegare l’uscita cuffia o linea della vostra scheda audio, all’ingresso del vostro processore AV o equalizzatore. I cavi, devono essere abbastanza lunghi per raggiungere, dalla vostra posizione di ascolto (dove è stato posizionato il microfono/misuratore collegato al computer), il vostro processore AV o equalizzatore. Se la vostra scheda audio ha dei connettori RCA, sono necessari dei cavi con queste terminazioni su entrambi i lati. Se invece l’uscita della scheda audio possiede un jack da 3.5mm (1/8"), avete bisogno di un cavo jack – phono stereo (chiamato anche adattatore a Y - Radio Shack parte 42-2550) o adattatore audio stereo (Radio Shack parte 274-883). Vedi immagine qui sotto.
Se utilizzate un cavo adattatore a Y, avete bisogno anche di due connettori phono - phono (chiamati anche accoppiatori RCA – vedi imagine qui sotto) per collegare tra loro i terminali dal vostro fonometro con quelli del processore AV (Radio Shack parte 274-1553).
Per collegare un equalizzatore BFD Pro DSP1124P o un FBQ2496, avete bisogno di un adattatore mono jack da 1/4" (6,35mm), come quello mostrato nella figura qui sotto (Radio Shack parte 274-884).
Connessioni
L’impostazione generale per le misure con un fonometro (SPL meter), è mostrata qui sotto. Se utilizzerete un microfono USB, non dovrete effettuare nessuna connessione agli ingressi della scheda audio, ma solo collegare la porta USB del microfono con la porta USB del vostro computer.
*Quando al posto del microfono USB, si utilizza un microfono / fonometro, l'uscita analogica di questo (o del pre microfonico), deve essere collegata con uno dei canali di ingresso della scheda audio (generalmente il destro per impostazione predefinita), ma possono essere utilizzati entrambi se non si utilizza la connessione di loopback della scheda audio (vedi sopra). Un apposito comando nelle Soundcard Preferences, dice a REW quale ingresso utilizzare.
- Entrambi i canali di uscita, veicolano il segnale di test. Uno (tipicamente il destro), deve essere collegato a un canale di ingresso del vostro processore AV o del vostro equalizzatore. Il collegamento al processore AV, permette di eseguire delle misure che mostreranno la risposta degli altoparlanti principali e naturalmente anche del subwoofer e mostreranno l’integrazione tra subwoofer e altoparlanti principali. Gli effetti della gestione dei bassi del vostro processore AV, possono essere inclusi nelle misurazioni. La connessione con il canale analogico destro o sinistro, permetterà la misura dei corrispondenti altoparlanti principali e del subwoofer. Spegnendo o sconnettendo gli altoparlanti principali o il sub, questi saranno esclusi dalle misure.
- Per una misura di base, gli altri ingressi e le uscite, non necessitano di essere collegati. La risposta della scheda audio, può essere compensata eseguendo una misurazione di riferimento, che si ottiene connettendo la sua uscita direttamente con l’ingresso e configurando REW per sottrarre la risposta misurata, dalla conseguente risposta della stanza. Però, è anche possibile utilizzare la connessione di loopback effettuata sul canale sinistro, come sorgente di temporizzazione di riferimento per consentire a REW di compensare automaticamente il ritardo generato dalla scheda audio e dal sistema operativo, durante la misura. Una temporizzazione di riferimento è necessaria anche per una corretta misura della fase, per comparare i ritardi di tempo tra le misure o per rilevare i corretti ritardi degli altoparlanti in sistemi audio multi-canale. Se avete questa necessità, vi servirà un ulteriore accoppiatore RCA per eseguire una connessione di loopback. La scelta di un canale come temporizzazione di riferimento, è stabilito in REW da un check box presente nella pagina Soundcard Preferences.
Collegare un equalizzatore
Se, per ottimizzare la risposta del vostro subwoofer, state utilizzando un equalizzatore (come il BFD Pro DSP1124P o FBQ2496), dovreste collegarlo tra l’uscita LFE/sub del processore AV e l’ingresso del subwoofer. Nel caso del BFD Pro, gli interruttori posti nel pannello posteriore per la regolazione del livello, dovrebbero essere premuti per impostare il livello a -10dBV.
Se il processore AV è dotato di una funzione anti-clipping (riduzione automatica della sensibilità in caso di segnali di elevata ampiezza), questa dovrebbe essere disabilitata, poiché potrebbe alterare i livelli di misurazione. La sensibilità dell’ingresso, dovrebbe essere idealmente impostata a 0.5V.
Il TAG McLaren AV32R DP e l’AV192R permettono di indirizzare il segnale di test verso ciascun altoparlante attraverso le impostazioni del Test Signal, contenute nei menu del fitro TMREQ relativo ad ogni altoparlante, che è utile per misurare altri diffusori (vedere questa nota per ulteriori dettagli). Questi sembrano essere gli unici processori AV dotati di questa funzionalità. Altri processori, potrebbero avere 5.1 or 7.1 ingressi analogici che possono essere utilizzati con un effetto simile, ma in alcuni casi, la gestione dei bassi potrebbe non venire applicata a tali ingressi, limitando la capacità di verifica dell’integrazione tra gli altoparlanti principali e il subwoofer.
Gamma di misura del fonometro
Se state utilizzando all'ingresso della scheda audio un fonometro, la gamma di misura dello strumento, dovrebbe essere impostata ad un valore normalmente usato per la calibrazione del livello degli altoparlanti e non dovrebbe essere modificata durante l’utilizzo di REW. Se state utilizzando un fonometro Radio Shack, e calibrate il vostro sistema a 75dB, selezionate la gamma di 80dB (questo è il livello standard raccomandato da DolbyTM). Impostate quindi il misuratore per una lettura “slow” con curva di pesatura C.
Se invece state utilizzando per la misura, un microfono USB o un microfono con preamplificatore, dovrete selezionare l’opzione Mic o Z Weighted SPL Meter nel pannello Mic/Meter Preferences (Preferenze Microfono/Fonometro).
Panoramica di REW
Dopo esserci dotati dell’equipaggiamento richiesto, possiamo ora dare un’occhiata a come è organizzato REW per l’esecuzione e l’analisi delle misure guardando la Panoramica di REW.